Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Beijing da xue xue bao ; Yi xue ban = Journal of Peking University. Health sciences. 54(5):907-919, 2022.
Article in Chinese | EMBASE | ID: covidwho-20242746

ABSTRACT

OBJECTIVE: Jingfang Granules have been recommended for the prevention and treatment of corona virus disease 2019 (COVID-19). Through chemical analysis and bioactivity evaluation, this study aims to elucidate the potential effective components of Jingfang Granules. METHOD(S): The inhibitory acti-vities of Jingfang Granules extract against 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro), spike protein receptor-binding domain (S-RBD) and human cyclooxygenase-2 (COX-2) were evaluated using enzyme assay. The antitussive effects were evaluated using the classical ammonia-induced cough model. The chemical constituents of Jingfang Granules were qualitatively and quantitatively analyzed by liquid chromatography-mass spectrometry (LC/MS). The 3CLpro and PLpro inhibitory activities of the major compounds were determined by enzyme assay, molecular docking, and site-directed mutagenesis. RESULT(S): Jingfang Granules exhibited 3CLpro and PLpro inhibitory activities, as well as COX-2 inhibitory and antitussive activities. By investigating the MS/MS behaviors of reference standards, a total of fifty-six compounds were characterized in Jingfang Granules. Sixteen of them were unambiguously identified by comparing with reference standards. The contents of the 16 major compounds were also determined, and their total contents were 2 498.8 mug/g. Naringin, nodakenin and neohesperidin were three dominating compounds in Jingfang Granules, and their contents were 688.8, 596.4 and 578.7 mug/g, respectively. In addition, neohesperidin and naringin exhibited PLpro inhibitory activities, and the inhibition rates at 8 mumol/L were 53.5% and 46.1%, respectively. Prim-O-glucosylcimifugin showed significant inhibitory activities against 3CLpro and PLpro, and the inhibitory rates at 8 mumol/L were 76.8% and 78.2%, respectively. Molecular docking indicated that hydrogen bonds could be formed between prim-O-glucosylcimifugin and amino acid residues H163, E166, Q192, T190 of 3CLpro (binding energy, -7.7 kcal/mol) and K157, D164, R166, E167, T301 of PLpro(-7.3 kcal/mol), respectively. Site-directed mutagenesis indicated amino acid residue K157 was a key active site for the interaction between prim-O-glucosylcimifugin and PLpro. CONCLUSION(S): Prim-O-glucosylcimifugin, neohesperidin, and naringin as the major compounds from Jingfang Granules could inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus proteases 3CLpro and PLpro. The results are valuable for rational clinical use of Jingfang Granules.

2.
Neural Regeneration Research ; 18(1):38-46, 2023.
Article in English | EMBASE | ID: covidwho-2313974

ABSTRACT

Obesity is associated with several diseases, including mental health. Adipose tissue is distributed around the internal organs, acting in the regulation of metabolism by storing and releasing fatty acids and adipokine in the tissues. Excessive nutritional intake results in hypertrophy and proliferation of adipocytes, leading to local hypoxia in adipose tissue and changes in these adipokine releases. This leads to the recruitment of immune cells to adipose tissue and the release of pro-inflammatory cytokines. The presence of high levels of free fatty acids and inflammatory molecules interfere with intracellular insulin signaling, which can generate a neuroinflammatory process. In this review, we provide an up-to-date discussion of how excessive obesity can lead to possible cognitive dysfunction. We also address the idea that obesity-associated systemic inflammation leads to neuroinflammation in the brain, particularly the hypothalamus and hippocampus, and that this is partially responsible for these negative cognitive outcomes. In addition, we discuss some clinical models and animal studies for obesity and clarify the mechanism of action of anti-obesity drugs in the central nervous system.Copyright © 2023 Wolters Kluwer Medknow Publications. All rights reserved.

3.
Coronaviruses ; 3(6) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2254520

ABSTRACT

Background: Novel coronavirus pneumonia COVID-19 has become a serious threat to human health. Traditional Chinese Medicine (TCM) has a good clinical effect in the treatment of COVID-19, with a high effective rate and a low rate of turning to the serious stage. Objective(s): We generated the web-accessed anti-COVID-19 TCM database to provide the anti-COVID-19 TCM information to develop effective drugs for the treatment of COVID-19. Method(s): Herein, we collected these prescriptions data by querying the CNKI and Wanfang Chinese da-tabases, the clinical guidance for COVID-19 pneumonia diagnosis and treatment, and further set up the web-accessible anti-COVID-19 TCM database. Result(s): Altogether, 293 different prescriptions are applied in four different COVID-19 stages of treat-ment, and the prevention of COVID-19 is composed of 452 TCM components. Conclusion(s): The database provides comprehensive information for anti-COVID TCM and thus would help to investigate novel ways to develop new anti-COVID-19 agents.Copyright © 2022 Bentham Science Publishers.

4.
Chinese Traditional and Herbal Drugs ; 54(1):192-209, 2023.
Article in English | Scopus | ID: covidwho-2245653

ABSTRACT

Objective To analyze the medication rules of related epidemic disease prescription in Treatise on Febrile Diseases based on data mining, and the mechanism of "Chaihu (Bupleuri Radix)-Huangqin (Scutellariae Radix)” as the core drugs in the treatment of coronavirus disease 2019 (COVID-19) by network pharmacology, in order to explore the contemporary value of classical prescriptions in the treatment of epidemic diseases. Methods The prescriptions for treating epidemic diseases in Treatise on Febrile Diseases were screened, and the medication rules such as drug frequency, flavor and meridian tropism as well as correlation, apriori algorithm were analyzed by using software such as R language. The mechanism of the core drugs in the medication pattern in the treatment of COVID-19 was explored by the network pharmacology. A "disease-drug-ingredient-target” network was constructed on the selected components and targets with Cytoscape. The key targets were introduced into String database for network analysis of protein-protein interaction (PPI), and gene ontology (GO) functional analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were conducted in R language. Results A total of 61 prescriptions for treating epidemic diseases in Treatise on Febrile Diseases were included, including 52 traditional Chinese medicines (TCMs). In the top 20 high-frequency drugs, warm drugs, spicy drugs and qitonifying drugs were mainly used, mostly in the spleen and lung meridian. Chaihu (Bupleuri Radix) and Huangqin (Scutellariae Radix) herb pair had the strongest correlation. A total of five clusters were excavated: supplemented formula of Xiaochaihu Decoction (小柴胡汤), Sini Decoction (四逆汤), supplemented formule of Maxing Shigan Decoction (麻杏石甘汤), Fuling Baizhu Decoction (茯苓白术汤) and Dachengqi Decoction (大承气汤). A total of 45 active ingredients, 189 action targets of Bupleuri Radix-Scutellariae Radix herb pair, and 543 targets of COVID-19 were obtained from TCMSP and Genecards, and 64 intersection targets were generated. The results of the network analysis showed that the main components of core drugs pair against COVID-19 may be quercetin, wogonin, kaempferol baicalein, acacetin etc., and the core targets may be VEGFA, TNF, IL-6, TP53, AKT1, CASP3, CXCL8, PTGS2, etc. A total of 1871 related entries and 164 pathways were obtained by GO and KEGG enrichment analysis, respectively. Conclusion In Treatise on Febrile Diseases, the treatment of epidemic diseases mainly chose pungent, warm, spleen-invigorating and qi-tonifying herbs, such as Xiaochaihu Decoction, Sini Decoction and Dachengqi Decoction, etc. It was found that Bupleuri Radix-Scutellariae Radix core herb pair prevent and treat COVID-19 through multi-target targets such as PTGS2, IL-6 and TNF. The ancient prescriptions for treating epidemic disease in Treatise on Febrile Diseases may have significant reference value for the prevention and treatment of new epidemic diseases today. © 2023 Editorial Office of Chinese Traditional and Herbal Drugs. All rights reserved.

5.
Algae ; 37(3):239-247, 2022.
Article in English | ProQuest Central | ID: covidwho-2055979

ABSTRACT

Enzyme-assisted hydrolysis is frequendy used as a cost-effective and efficient method to obtain functional ingredients from bioresources. This study involved die enzyme-assisted hydrolyzation and purification of fucoidan from Ecklonia maxima stipe and die investigation of its anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Fucoidans of Viscozyme-assisted hydrolysate from E. maxima (EMSFs) harvested in Jeju, Korea. Structural and chemical characterizations were performed using fourier transform infrared spectroscopy, scanning electron microscope, and monosaccharide analysis. Among fucoidans, EMSF6 was rich in fucose and sulfate and had a similar structural character to commercial fucoidan. EMSF6 showed a strong inhibitory effect on nitric oxide generation in LPS-induced RAW 264.7 cells and significantly decreased die production of LPS-induced pro-inflammatory cytokines, including interleukin-6, interleukin-1 p, and tumor necrosis factor a. The anti-inflammatory potential of EMSF6 was mediated through the down-regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression. Thus, fucoidans from&temppound;. maxima stipe are promising candidates for functional food products.

6.
Arab J Chem ; 15(11): 104302, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2041577

ABSTRACT

Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.

7.
Chinese Traditional and Herbal Drugs ; 53(15):4781-4794, 2022.
Article in Chinese | EMBASE | ID: covidwho-2033401

ABSTRACT

Objective To explore the application pattern and mechanism of medicine and food homologous traditional Chinese medicine (TCM) against modern viral diseases. Methods The method of literature mining was applied based on the characteristics of modern viral diseases, combining with ancient books and modern prescriptions for the prevention and treatment of viral diseases to build a relevant prescription database. Then SPSS and R language were used to analyze the high-frequency medicine and food homologous TCM and high confidence medicine and food homologous prescriptions in these prescriptions, and cluster analysis was carried out. The antiviral characteristic active ingredients of high-frequency medicinal and food homologous TCN were identified and analyzed, and the action mechanism of active ingredients against modern viral diseases was evaluate by network pharmacology. Results In the prevention and treatment of modern viral diseases, Gancao (Glycyrrhizae Radix et Rhizoma)-Chenpi (Citri Reticulatae Pericarpium)-Fuling (Poria) had the highest confidence, Glycyrrhizae Radix et Rhizoma-Jiegeng (Platycodonis Radix) had the highest support. At the same time, the prescriptions were clustered and analyzed to obtain Jinyinhua (Lonicerae Japonicae Flos)-Huangqi (Astragali Radix)-Huoxiang (Agastache rugosa), Glycyrrhizae Radix et Rhizoma-Xingren (Armeniacae Semen Amarum)-Poria-Platycodonis Radix-Citri Reticulatae Pericarpium, Ganjiang (Zingiberis Rhizoma)-Renshen (Ginseng Radix et Rhizoma), Zisu (Perilla frutescens)-Gegen (Puerariae Lobatae Radix), Lugen (Phragmitis Rhizoma)-Sangye (Mori Folium), Shengjiang (Zingiberis Rhizoma Recens)-Dazao (Jujubae Fructus) clustering new prescription. The core action targets of EGFR, CASP3, VEGFA, STAT3, MMP9, HSP90AA1, mTOR, PTGS2, MMP2, TLR4, MAPK14, etc were identified. The action mechanism involved human cytomegalovirus infection, coronavirus disease-coronavirus disease 2019 (COVID-19), etc. The core action pathway were phosphatidylinositol-3/kinase protein kinase B (PI3K/Akt) signal pathway, mitogen activated protein kinase (MAPK) signal pathway, interleukin-17 (IL-17) signal pathway, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signal pathway, etc. Conclusion Through data mining, six new prescriptions for preventing and controlling modern viral diseases were obtained, and the mechanism of action was preliminarily discussed, which provided some reference for the research and development of medicine and food homologous TCM prescriptions for the prevention and treatment of viral epidemics and related health products.

8.
Vojnosanitetski Pregled ; 79(6):539-547, 2022.
Article in English | Web of Science | ID: covidwho-1978989

ABSTRACT

Background/Aim. The novel severe acute respiratory syn-drome coronavirus 2 (SARS Cov-2) has triggered a pandem-ic that causes a disease with complex clinical manifestations (coronavirus disease 2019, COVID-19). Soon it became clear that patients who had some comorbidities had a bigger chance of getting the severe form of COVID-19. The aim of the study was to investigate if there was a link between cardiac injury and COVID-19 severity and mortality in pa-tients. Methods. All consecutive patients with laboratory -confirmed COVID-19 were included and followed up until discharge or death from January 30, 2020, to April 5, 2020. Results. A total of 261 COVID-19 patients were included, and 29 (11.1%) had cardiac injury on admission. Patients with cardiac injury were older than those without cardiac in-jury (72.8 vs 55.8 years old) and more likely to be male (82.8% vs 42.2%). Patients with cardiac injury were also more likely to be smokers (31.0% vs 12.5%), more likely to have chronic cardiovascular disease (24.1% vs 7.8%), chron-ic pulmonary disease (17.2% vs 3.0%), and chronic kidney disease (10.3% vs 2.2%) compared to patients without cardi-ac injury. Laboratory findings suggested that patients with cardiac injury were more likely to have leukocyte counts > 10 x 109/L, pronounced lymphopenia, direct bilirubin, myohemoglobin, blood urea nitrogen, C-reactive protein, and pro-B-type natriuretic peptide but lower levels of se-rum total protein and estimated glomerular filtration rates compared to patients without cardiac injury. Patients with cardiac injury experienced more complications (72.4% vs 47.8%), including acute respiratory distress syndrome (20.7% vs 2.7%), acute kidney injury (10.3 vs 0.4%), severe COVID-19 (58.6% vs 11.6%) and death (55.2% vs 3.9%) compared to patients without cardiac injury. Multivariate analyses showed that cardiac injury was associated with an increased risk of severe COVID-19 [hazard ratio (HR) = 8.71, 95% confidence interval (CI) = 2.37-32.04] and death (HR = 20.84, 95% CI = 1.32-328.22). Conclusion. Cardiac injury on admission was associated with a higher risk of disease progression and death in patients with COVID-19.

9.
Natural Product Communications ; 17(7), 2022.
Article in English | EMBASE | ID: covidwho-1956964

ABSTRACT

Objective: The Chinese herbal formula Huo-Xiang-Zheng-Qi (HXZQ) is effective in preventing and treating coronavirus disease 19 (COVID-19) infection;however, its mechanism remains unclear. This study used network pharmacology and molecular docking techniques to investigate the mechanism of action of HXZQ in preventing and treating COVID-19. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to search for the active ingredients and targets of the 10 traditional Chinese medicines (TCMs) of HXZQ prescription (HXZQP). GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledge Base (PharmGKB), Therapeutic Target Database (TTD), and DrugBank databases were used to screen COVID-19-related genes and intersect them with the targets of HXZQP to obtain the drug efficacy targets. Cytoscape 3.8 software was used to construct the drug-active ingredient–target interaction network of HXZQP and perform protein–protein interaction (PPI) network construction and topology analysis. R software was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, AutoDock Vina was utilized for molecular docking of the active ingredients of TCM and drug target proteins. Results: A total of 151 active ingredients and 250 HXZQP targets were identified. Among these, 136 active ingredients and 67 targets of HXZQP were found to be involved in the prevention and treatment of COVID-19. The core proteins identified in the PPI network were MAPK1, MAPK3, MAPK8, MAPK14, STAT3, and PTGS2. Using GO and KEGG pathway enrichment analysis, HXZQP was found to primarily participate in biological processes such as defense response to a virus, cellular response to biotic stimulus, response to lipopolysaccharide, PI3K-Akt signaling pathway, Th17 cell differentiation, HIF-1 signaling pathway, and other signaling pathways closely related to COVID-19. Molecular docking results reflected that the active ingredients of HXZQP have a reliable affinity toward EGFR, MAPK1, MAPK3, MAPK8, and STAT3 proteins. Conclusion: Our study elucidated the main targets and pathways of HXZQP in the prevention and treatment of COVID-19. The study findings provide a basis for further investigation of the pharmacological effects of HXZQP.

10.
Journal of Investigative Dermatology ; 142(8):S107, 2022.
Article in English | EMBASE | ID: covidwho-1956224

ABSTRACT

The COVID pandemic caused an increase in virtual meetings & work from home scenarios that resulted in people spending increased time in front of computer screens & electronic devices. Studies have shown that blue light can produce cytotoxic effects, primarily through the production of reactive oxygen species & increased inflammation. However, the topic has been controversial with some studies claiming no adverse effects of blue light on the skin. Methods for testing the effects of blue light using in vitro testing models are lacking. Our work was conducted in order to develop a reproducible, validated testing method for assessing the effects of blue light on the skin. We designed a custom blue-light box that can be used to generate blue light at 460 nm wavelength. We performed a series of studies to optimize the dose and timing of the exposure & skin-culture conditions. Our work demonstrates that 6 hours of daily blue light for 5 consecutive days (total 30 J/cm2) produced a dose-and-time dependent decrease in skin health in 3D full thickness in vitro skin tissues. In addition, gene expression data showed an increase in the expression of genes that regulate inflammation and oxidative stress pathways (IL1A, IL6, CXCL8, COX2, CYP1B1, & NQO1) & a decrease in the expression of genes that maintain skin barrier and integrity (KRT1, KRT10, LOR, DSC and Collagen). Genes regulating skin aging & hydration including MMP1 & FLG were also regulated by exposure to blue light. Enzyme-linked immunoassays were performed to confirm changes in specific proteins. Exposure to blue light significantly increased 8-hydroxy-2' -deoxyguanosine, a marker for oxidative stress, & MMP1, markers for photoaging. Immunohistochemistry staining was performed to confirm changes in Collagen, Filaggrin & NQO1 protein expression in skin tissue. Our results showed that consistent blue light exposure produced skin damage via alterations in key biological pathways. This work provides a new, reproducible in vitro testing method for assessing the effects of blue light on human skin using gene expression, protein ELISA and IHC staining.

11.
Inflammopharmacology ; 30(5): 1645-1657, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1930472

ABSTRACT

BACKGROUND: It is known that severe acute respiratory coronavirus 2 (SARS-CoV-2) is the viral strain responsible for the recent coronavirus disease 2019 (COVID-19) pandemic. Current documents have demonstrated that the virus causes a PGE2 storm in a substantial proportion of patients via upregulating cyclooxygenase-2 (COX-2) and downregulating prostaglandin E2 (PGE2)-degrading enzymes within the host cell. AIM: Herein, we aimed to study how short-term treatment with celecoxib (Celebrex), a selective COX-2 inhibitor, affects demographic features, early symptoms, O2 saturation, and hematological indices of cases with COVID-19. METHODS: A total of 67 confirmed COVID-19 cases with a mild or moderate disease, who had been referred to an institutional hospital in south-eastern Iran from October 2020 to September 2021, were enrolled. Demographic characteristics, symptoms, and hematological indices of the patients were recorded within different time periods. One-way ANOVA or Kruskal-Wallis tests were used to determine differences between data sets based on normal data distribution. RESULTS: O2 saturation was statistically different between the control group and patients receiving celecoxib (p = 0.039). There was no marked difference between the groups in terms of the symptoms they experienced (p > 0.05). On the first days following Celebrex therapy, analysis of complete blood counts showed that white blood cell (WBC) counts were markedly lower in patients treated with a high dose of celecoxib (0.4 g/day) than in controls (p = 0.026). However, mean lymphocyte levels in patients receiving a high dose of celecoxib (0.4 g/day) were markedly higher than in patients receiving celecoxib with half of the dose (0.2 g/day) for one week or the untreated subjects (p = 0.004). Changes in platelet count also followed the WBC alteration pattern. CONCLUSION: Celecoxib is a relatively safe, inexpensive, and widely available drug with non-steroidal anti-inflammatory properties. The therapeutic efficacy of celecoxib depends on the administrated dose. Celecoxib might improve disease-free survival in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Cyclooxygenase 2 Inhibitors , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Celecoxib/therapeutic use , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Dinoprostone , Humans , Pyrazoles/adverse effects , SARS-CoV-2 , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
12.
Sleep ; 45(SUPPL 1):A129-A130, 2022.
Article in English | EMBASE | ID: covidwho-1927401

ABSTRACT

Introduction: Chronic low-grade systemic inflammation is involved in the pathogenesis of many human diseases. Common sleep patterns of restricting sleep during weekdays and catching up on sleep over the weekend induce inflammatory upregulation that may not resolve following weekend recovery sleep. We hypothesize that this sleep pattern leads to an inflammatory imbalance of markers regulating inflammatory homeostasis, including inflammatory markers (eg, interleukin-6 (IL-6) and cyclooxygenase 2 (COX-2)) and markers of counter-inflammation (eg, glucocorticoids (GCs)). The enzyme COX-2 is involved in prostaglandin synthesis and is the target of pain-relieving nonsteroidal anti-inflammatory drugs (NSAIDs). GCs are used in the treatment of many inflammatory diseases, including severe acute infection with SARS-CoV-2. We investigated if sleep restriction impairs the capacity of GCs to inhibit inflammatory COX-2 expression in a preliminary dataset. Methods: The present preliminary dataset (N=6, 2F/4M) derives from an ongoing randomized controlled within-subjects trial consisting of three 11-day in-hospital protocols (2 restricted sleep arms, 1 control sleep arm). The ongoing study is blinded for administration of placebo or aspirin under sleep restriction. Under restricted sleep conditions, 2 nights of baseline sleep (8h/night) were followed by 5 nights of restricted sleep (4h/ night), concluding with 3 nights of recovery sleep (8h/night). In the control condition, participants could sleep 8h/night throughout the entire protocol. Blood samples were taken after baseline sleep, after 5 nights of restricted or control sleep, and after 2 nights of recovery sleep. Data were analyzed using generalized linear mixed models. Results: Sleep restriction was associated with decreased capacity of GCs to inhibit COX-2 expression in monocytes (p<.01) and has the expected inflammatory effect on IL-6 production in monocytes (p<.01). Moreover, sleep restriction has lasting inflammatory effects as shown in increased inflammation following 2 nights of recovery sleep (p<.01). Conclusion: In conclusion, the present preliminary analysis suggests that in patients treated with GCs, sleep restriction potentially reduces their effectiveness in controlling inflammation, thus contributing to increased inflammation-related morbidity. Sample collection and data analysis is ongoing.

13.
Australasian Journal of Dermatology ; 63(SUPPL 1):53-54, 2022.
Article in English | EMBASE | ID: covidwho-1883174

ABSTRACT

Aims: A fixed drug eruption (FDE) is a common cutaneous adverse drug reaction which occurs following administration of an offending drug or substance. The list of drugs incriminated in FDEs is ever changing, being influenced by the prescribing patterns of a given region. As newer drugs enter the market, and older drugs lose favour, one must refresh one's knowledge on potential culprits. The aim of this review is to provide an update on the list of drugs causing FDEs, with a focus on emerging drug culprits reported since the start of the century. Methods: A review of current FDE literature was performed, focussing on new and emerging drug culprits from the current century. Results: Across currently published literature, triggers for FDE are widely varied. The most frequently implicated drugs including analgesia (NSAIDs and paracetamol) and antibiotics. Co-trimoxazole is perhaps the most well described single agent. Since the start of the century there have been over 200 drugs named in case reports on FDE. Newer novel agents of note include cyclooxygenase 2 specific inhibitors, fluconazole, and phosphodiesterase 5 inhibitors. Other drugs, including vaccines (such as various SARS-CoV-2 vaccines), herbal medicine preparations and contrast, are of particular interest as patients may omit reporting this as part of their medication history. Conclusion: Drugs incriminated in FDE vary based on the geographical region studied and prescribing patterns at a given times. Newer drugs continue to enter the market and are playing an increasing role in the field of FDE. Awareness of rarer culprits and emerging novel agents can help identify a patient trigger, allowing for prompt withdrawal of the causative agent, preventing recurrence.

14.
Topics in Antiviral Medicine ; 30(1 SUPPL):118, 2022.
Article in English | EMBASE | ID: covidwho-1880283

ABSTRACT

Background: Coronavirus disease 2019 (COVID19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has varied clinical presentations from mild subclinical to severe disease with high mortality. Our aim was to determine whether examining immune-related gene expression early in infection could predict progression to severe disease. Methods: In subjects of the All Ireland Infectious Diseases Cohort study, we analysed expression of 579 genes with the NanoString nCounter Immunology panel in peripheral blood mononuclear cells in those with confirmed SARS-CoV-2 infection collected within 5 days of symptom onset and matched SARS-CoV-2 negative controls with respiratory infection. Subsequent maximum COVID19 disease severity was classified as mild or severe. Read counts were normalized using panel housekeeping genes. Expression changes in severity groups were estimated against control baseline. Results: Between April and July of 2020, we recruited 120 subjects, 62 with COVID19 and 58 controls, with average age 59 y.o. (IQR 34-88), 66% males and 69% Caucasian ethnicity. Maximal disease severity was used to separate COVID19 cases into mild (n=31) and severe (n=31). We identified 20 significantly deregulated genes between those with COVID19 and controls (;log2 fold;>0.5, p<0.05, Benjamin-Yekutieli p-adjustment). Function of 12 of these genes related to cytokine signaling, 9 upregulated genes to type I interferon signaling (MX1, IRF7, IFITM1, IFI35, STAT2, IRF4, PML, BST2, STAT1), while 7 downregulated genes mapped to innate immune function (IRF7, ICAM2, SERPING1, IFI16, BST2, FCER1A, PTK2). Expression in the severe group showed downregulation of FCER1A (innate immunity regulation), IL1B and TNF (inflammatory cytokines), and PTGS2 (inflammatory mediator) and greater upregulation of TNFSF4 (cytokine signaling) and PTK2 (innate immunity). Mild cases presented higher upregulation of IFIT2 (type I interferon signaling). Conclusion: Observed early downregulation of regulators and mediators of inflammation in those who developed severe COVID19, suggested dysregulation of inflammation. Specifically, IFIT2 upregulation in mild cases and FCER1A downregulation in severe cases, points to early differences in host responses centered on deregulation of the interferon and inflammation responses. Whether these patterns reflect delayed interferon involvement in pathways to control the infection and contribute to pathological inflammation and cytokine storms observed in severe COVID19 requires further research.

15.
International Journal of Pharmaceutical Sciences Review and Research ; 73(2):53-61, 2022.
Article in English | EMBASE | ID: covidwho-1863755

ABSTRACT

Traditional medicine is often considered to be a kind of complementary or alternative medicine (CAM) nowadays. Therefore, documenting and identifying the herbs that are effective in treating various diseases is vital for future disease control programs. The study aims to perform Molecular docking analysis of the phytoconstituents of the Bauhinia acuminata named Quercetin, Bauhinone, Beta-sitosterol, and Kaempferol 3-glycoside with the target proteins with PDB IDs namely 2ITY, 1A52, 3L4U, IT02, 5COX, 6VYO involved in Lung cancer, breast cancer, anti-diabetes, anti-obesity, anti-inflammatory, and SARS COV-2. Chemsketch software, the study of the in-silico docking was done using Autodock.4.2 software and the binding interactions are visualized using Discovery studio 3.1. The docking scores and analysis of the interactions of the phytoconstituents with target proteins suggests that all the selected 5 phytoconstituents showed excellent binding to 2ITY and 5-COX as opposed to the standard drugs Erlotinib and Aspirin. In this study, it was concluded that the investigated phytoconstituents showed potent inhibiting activity, and the dock scores as opposed to standard as in Table 6, directly represent possible binding to the target proteins indicating their good biological activity as in lung cancer and anti-inflammatory action.

16.
Chinese Pharmacological Bulletin ; 36(9):1309-1316, 2020.
Article in Chinese | EMBASE | ID: covidwho-1863006

ABSTRACT

Aim To explore the active compound of Maxingganshi decoction in treatment of novel coronavirus pneumonia(COVID-19). Methods With the help of TCMSP database, the chemical components and action targets of ephedra, almond, licorice, and gypsum in Maxingganshi decoction were searched, and then a C-T network, protein interaction analysis, GO functional enrichment analysis, and KEGG pathway enrichment were constructed. Analysis was performed to predict its mechanism of action. Results A total of 120 compounds in Maxingganshi decoction corresponded to 222 targets. PTGS2, ESR1, PPARG, AR, NOS2, NCOA2 acted on PI3K-Akt signaling pathway, TNF signaling pathway, IL-17 signaling pathway, T cell receptor signaling pathways, etc. The results of molecular docking showed that the affinity of quercetin, kaempferol, glabridin and other core compounds was similar to recommended drugs in treatment of COVID-19. Conclusions The active compounds of Maxingganshi decoction can target multiple pathways to achieve the therapeutic effect of COVID-19.

17.
2nd International Conference on Advanced Research in Computing, ICARC 2022 ; : 320-325, 2022.
Article in English | Scopus | ID: covidwho-1831765

ABSTRACT

The SARS-COV-2 become a global pandemic causing significant mortality and morbidity all around the world. Until now there are no effective drugs or vaccines available against SARS-CoV-2. In this regard, medicinal plants captured enormous attention, as natural products are safe and easily available bioactive compounds in which maintain the disease homeostasis. Amongst, natural compounds of Coriandrum sativum L (coriander) have proved to be effective in viral infection, as they possess antiviral and anti-inflammatory activities. However, molecular regulation of such bioactivities remains elusive. We performed molecular docking analyses using AutoDock Vina to investigate the potential inhibitory activities of the seven natural compounds of coriander (limonene, geraniol, gamma-terpinene, geranyl acetate, caffeic acid, ferulic acid, gallic acid) against the essential proteins of SARS-CoV-2 (main protease (Mpro), nonstructural protein-13 (NSP-13), Papaine like protease (PLpro) and RNA dependent RNA polymerase(RdRp)) together with two main inflammatory proteins ( cyclooxygenase-2 (COX-2) and interleukin-6 (IL- 6)). The empirical and knowledge-based algorithm of AutoDock Vina was utilized to calculate free binding energies of ligands and BIOVIA discovery studio 2020 tool was used to visualize docking results. Our results reveal that gallic acid has a strong binding affinity to Mpro (-5.8 kcal/mol) and NSP13 (-7.0 kcal/mol) forming five and three conventional hydrogen bonds respectively. Further, caffeic acid demonstrates a higher binding affinity to PLpro (-7.4 kcal/mol) and RdRp (-6.7 kcal/mol) while securing four and three conventional hydrogen bonds respectively. Interestingly, both COX-2 (-6.9 kcal/mol) and IL-6 (-6.3 kcal/mol) also show a higher binding affinity to gallic acids. In addition, gallic acid stabilizes three conventional hydrogen bonds with COX-2 whereas it forms four conventional hydrogen bonds with IL-6. Further, drug-likeness properties of gallic acid and caffeic acid were determined using the SWISSADME server. Our results show that both gallic acid and caffeic do not violate Lipinski rules suggesting these compounds as new antiviral and anti-inflammatory drug candidates for SARS-CoV-2. © 2022 IEEE.

18.
Gene Rep ; 27: 101608, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1773330

ABSTRACT

Rapid emergence of covid-19 variants by continuous mutation made the world experience continuous waves of infections and as a result, a huge number of death-toll recorded so far. It is, therefore, very important to investigate the diversity and nature of the mutations in the SARS-CoV-2 genomes. In this study, the common mutations occurred in the whole genome sequences of SARS-CoV-2 variants of Bangladesh in a certain timeline were analyzed to better understand its status. Hence, a total of 78 complete genome sequences available in the NCBI database were obtained, aligned and further analyzed. Scattered Single Nucleotide Polymorphisms (SNPs) were identified throughout the genome of variants and common SNPs such as: 241:C>T in the 5'UTR of Open Reading Frame 1A (ORF1A), 3037: C>T in Non-structural Protein 3 (NSP3), 14,408: C>T in ORF6 and 23,402: A>G, 23,403: A>G in Spike Protein (S) were observed, but all of them were synonymous mutations. About 97% of the studied genomes showed a block of tri-nucleotide alteration (GGG>AAC), the most common non-synonymous mutation in the 28,881-28,883 location of the genome. This block results in two amino acid changes (203-204: RG>KR) in the SR rich motif of the nucleocapsid (N) protein of SARS-CoV-2, introducing a lysine in between serine and arginine. The N protein structure of the mutant was predicted through protein modeling. However, no observable difference was found between the mutant and the reference (Wuhan) protein. Further, the protein stability changes upon mutations were analyzed using the I-Mutant2.0 tool. The alteration of the arginine to lysine at the amino acid position 203, showed reduction of entropy, suggesting a possible impact on the overall stability of the N protein. The estimation of the non-synonymous to synonymous substitution ratio (dN/dS) were analyzed for the common mutations and the results showed that the overall mean distance among the N-protein variants were statistically significant, supporting the non-synonymous nature of the mutations. The phylogenetic analysis of the selected 78 genomes, compared with the most common genomic variants of this virus across the globe showed a distinct cluster for the analyzed Bangladeshi sequences. Further studies are warranted for conferring any plausible association of these mutations with the clinical manifestation.

19.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1715398

ABSTRACT

The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.


Subject(s)
Anhedonia/physiology , Cyclooxygenase 2/metabolism , Hippocampus/metabolism , Stress, Psychological/metabolism , Anhedonia/drug effects , Animals , Antidepressive Agents/pharmacology , Celecoxib/pharmacology , Citalopram/pharmacology , Depression/drug therapy , Depression/metabolism , Hindlimb Suspension/physiology , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Psychological/drug therapy , Swimming/physiology
20.
Blood ; 138:1767, 2021.
Article in English | EMBASE | ID: covidwho-1582215

ABSTRACT

Introduction Severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) can induce a strong host immune response. Several groups have investigated the course of antibody responses in patients recovering from SARS-CoV-2 infections but little is known about the recovery of cellular immunity. This study investigated the cellular immune response in people who had recovered from SARS-CoV2 infection. Methods 162 coronavirus disease 2019 (COVID-19) convalescent plasma donors (CCD) and 40 healthy donor (HD) controls were enrolled prospectively in an IRB-approved protocol (Clinical Trials Number: NCT04360278) and provided written informed consent to participate in the study. Using the nCounter platform and host response panel with 785 genes across more than 50 pathways, we compared transcriptomic profiles on RNA samples obtained from the peripheral blood leukocytes of these 162 CCD and 40 HD. Additionally, in 69 of the 162 CCD samples, we evaluated transcriptomic trends at more than one-time point during the convalescent period. Results Age, sex, ethnicity, and body mass index distributions were similar among the CCD and HD. With respect to baseline complete blood counts, hemoglobin, platelets, and absolute basophil and eosinophil counts, all were similar among CCD and HD (Table 1). However, despite sample collections occurring several days after convalescence, mean counts for absolute neutrophil counts, absolute monocyte counts, and absolute lymphocyte counts were significantly higher among CCD compared to HD. 30-90 days after diagnosis, 19 of 773 genes differed (FDR < 0.05) between the average CCD and HD samples. Up-regulated genes included MAFB, CTLA4, PTGS2, and the chemokine signaling genes CXCR4, CXCL5, CXCL2 and CCR4. Down-regulated genes included PTGER2, CASP8, and the interleukins IL36A, IL31, IL20 and IL21 (Figure 1 a,b). Differential gene expression persisted for months. At 90-120 days, 13 genes were differentially regulated, including again MAFB CXCR4, PTGS2, CXCL2 and PTGER2, plus SMAD4. At 120-150 days post-diagnosis, 58 genes were differentially expressed (FDR < 0.05) compared to HD. Pathways with up-regulated genes included Treg differentiation, type III interferon signaling and chemokine signaling. 150-360 days post-diagnosis, 4 genes remained up-regulated on average (FDR < 0.05): PTGS2, PIK3CR, CXCL1 and SMAD4 (Figure 1 c,d). Individual patients varied considerably from the mean trend. Scoring samples by their similarity to the gene expression profile of the mean HD sample, 21 CCD samples from 20 unique patients (12%) were identified as highly perturbed from HD. 84% of these highly perturbed samples were collected > 90 days post-diagnosis. Of these 21 samples, 6 were distinguished by > 2-fold up-regulation of a cluster of interleukin and type-1 interferon genes (Figure 2). Conclusions Overall, our study identified important gene expression trends in CCD compared to HD in the post-acute period. The changes varied with time and among donors. As the expression of T-cell inhibitory molecule CTLA4 fell, the number of differentially expressed increased with the most marked changes occurring 120 to 150 days post-diagnosis in genes in chemokine signaling, type III interferon signaling and Treg pathways. Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed in individuals following recovery from COVID-19 infection. Our data may serve as the basis for risk modification strategies in the period of active infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. [Formula presented] Disclosures: Danaher: NanoString Technologies: Current Employment, Current holder of individual stocks in a privately-held company.

SELECTION OF CITATIONS
SEARCH DETAIL